2023 IPU Advanced Regulatory Studies Program - Utility Asset Depreciation

Dane A. Watson, PE, CDP

Alliance Consulting Group (214) 473 - 6771
dwatson@alliancecg.net

Goal

To better understand depreciation theory and practice and better evaluate a depreciation study

- Did the study follow accepted principles?
- How thorough was the study?
- Was the appropriate information considered?
- Are the results reasonable in light of those considerations?

Topics

- Basic Utility Asset Depreciation
- Why is Depreciation Important?
- Depreciation Definition
- Depreciation Analysis Review
- Evaluating Depreciation Studies
- Appendix - Examples of "pitfalls" in analysis

FERC Chart of Accounts

PLANT

- FERC Account
- 101...Electric plant in service

RESERVE
FERC Account
108...Accumulated provision for
depreciation of electric utility plant

Example of Capital Recovery

- Assume that a vehicle used in a utility's business costs $\$ 21,000$, and the vehicle will last 7 years.
- For ratemaking purposes, the total cost is not allowed in the year spent. Instead, it is "capitalized" and spread out over the life of the asset.
- Thus, $\$ 3,000$ ($\$ 21,000$ divided by 7 years) is charged to depreciation expense each year.
- And is allowed as an expense for ratemaking purposes.

Example of Capital Recovery contd

- Assume further that the vehicle will have salvage (resale) value of $\$ 1,400$ at the end of it's 7 -year life.
- Now, the annual depreciation expense is reduced to provide capital recovery of only $\$ 19,600$ since $\$ 1,400$ will be paid by a third party as part of the sale.
- The annual depreciation now is $\$ 2,800$ ($\$ 21,000-\$ 1,400$ $=\$ 19,600$ divided by $7=\$ 2,800$)

Bookkeeping Entries?

- 1. Purchase the vehicle:
- Debit Plant in Service.......... \$21,000
- Credit Accounts Payable.................. \$21,000
- 2. Pay the invoice:
- Debit Accounts Payable....... \$21,000
- Credit Cash
\$21,000
- These are called "journal entries" which are then posted to the ledger

Bookkeeping Entries Cont'd

- 3. First Year's Annual Depreciation Accrual:
- Debit Depreciation Expense...... $\$ 2,800$
- Credit Accumulated provision for Depreciation \$2,800
- 4. Each Subsequent year's annual Accrual:
- Debit Depreciation Expense...... $\$ 2,800$
- Credit Accumulated Provision for Depreciation
\$2,800

Bookkeeping Entries Cont'd

- 5. Retirement of Vehicle:
- Debit Accumulated Provision for Depreciation...................... $\$ 21,000$
- Credit Plant in Service.................... $\$ 21,000$
- 6. Sale of Vehicle:
- Debit Cash (or Accounts Receivable)........................ \$1,400
- Credit Accumulated Provision for Depreciation.................................. 1,400
- Why Is Depreciation Important?

What Is Depreciation and What Does An Analyst Define?

Simply put, depreciation is the allocation of the cost of an asset (including the cost to remove the asset) over the useful life of the asset.

- Depreciation Analysts will define the life (including the pattern of retirement of the group) and the net salvage in a deprecation study.
- After those two parameters are defined, the rest (calculating depreciation expense and depreciation rates) is simply a mathematical exercise.

Why Is Depreciation Important?

- GAAP requirement to record depreciation expense
- Although non-cash, depreciation creates cash flow in regulated entities
- Large component of Revenue Requirements given capital intensive nature of industry
- Return on undepreciated investment attracts investors
- Required by regulators
- Intended to allocate cost of plant investment to generation of customers who benefit from use of the plant (i.e., intergenerational equity)

What's all the "fuss" over Depreciation?

- Capital Recovery is only accomplished through a revenue stream for a regulated entity that is included in their tariffs.
Depreciation expense is a large item in a company's cost of service.
- It is complicated and differences of opinion can exist. Many times, the study results will be contested.

Depreciation Definition

Definitions of Depreciation

- Federal Energy Regulatory

Commission (FERC)

- American Institute of Certified Public Accountants (AICPA)
- Accounting Profession Definition

What is Depreciation? (FERC Definition)

The FERC in its Uniform System of Accounts defines depreciation as:
...the loss in service value not restored by current maintenance, incurred in connection with the consumption or prospective retirement of plant in the course of service from causes which are known to be in current operation and against which the utility is not protected by insurance. Among the causes to be given consideration are wear and tear, decay, action of the elements, inadequacy, obsolescence, changes in the art, changes in demand and requirements of public authorities, and in the case of gas companies, the exhaustion of natural resources.

What is Depreciation? (AICPA Definition)

The AICPA in its Accounting Research and Terminology Bulletin \#1 defines depreciation accounting as:
...a system of accounting which aims to distribute the cost or other basic value of tangible capital assets, less salvage (if any), over the estimated useful life of the unit (which may be a group of assets) in a systematic and rational manner. It is a process of allocation, not valuation. Depreciation for the year is the portion of the total charge under such a system that is allocated to the year. Although the allocation may properly take into account occurrences during the year, it is not intended to be a measurement of the effect of all such occurrences.

What is Depreciation? (Accounting Professional Definition)

The process of allocating the cost of a plant asset to expense over its service (useful) life in a rational and systematic manner.

Depreciation Analysis Review

Data Analysis (Life) What Are We Trying To Estimate?

EXPERIENCE

Data Analysis (Life) Life Analysis Methods

- Actuarial
- Experience Bands
- Placement Bands
- Semi-Actuarial
- Simulated Plant Record (SPR) Calculations
- Life Span/Forecast Calculations

Data Analysis (Life) Actuarial Analysis

- Actuarial Analysis - models the life of historical retirements (people generally use analysis called the "retirement rate")
- Uses "aged" data (e.g. in-service dates and retirement dates for asset retirements)

Data Analysis (Life) Unaged Data

UNAGED DATA

END-OF-YEAR BALANCES

```
VINT INSTS 1983 1984 1985 1986 1987 1988
    1983 220
    1984250
    1985270
    1986 285
    1987 300
    1988320
    1989350
    1990}37
    1991 390
    1992405
    1993450
    1994480
    1995500
    BALANCE 220 470 740 1,025 1,325 1,643 1,986 2,347 2,708 3,061 3,434 3,801 4,150
```


Data Analysis (Life) Aged Data

AGED DATA

END-OF-YEAR BALANCES
VINT INSTS 1983198419851986198719881989199019911992199319941995
$\left.\begin{array}{llllllllllllll}1983 & 220 & 220 & 220 & 220 & 220 & 220 & 218 & 213 & 207 & 194 & 174 & 152 & 125\end{array}\right) 95$
$1984250 \quad 250$
$1985270 \quad 270270 \quad 270$
$1986285 \quad 285 \quad 285 \quad 285 \quad 285$
1987300
1988320
1989350
1990375
1991390
1992405
1993450
1994480

300	300	300	300	300	297	291	282	264

$\begin{array}{lllllllll}320 & 320 & 320 & 320 & 320 & 317 & 310 & 301\end{array}$
$\begin{array}{llllllll}350 & 350 & 350 & 350 & 350 & 347 & 340\end{array}$
$\begin{array}{lllllll}375 & 375 & 375 & 375 & 375 & 371\end{array}$
$\begin{array}{llllll}390 & 390 & 390 & 390 & 390\end{array}$
$\begin{array}{llll}405 & 405 & 405 & 405\end{array}$
$450 \quad 450 \quad 450$
480480
500
BALANCE 220470740 1,025 1,325 1,643 1,986 2,347 2,708 3,061 3,434 3,801 4,150
A/C 812

Year of Activity	Plant Installed	Retirements			Account Balance End of Year
		Cost	$\begin{aligned} & \text { Year } \\ & \text { Installed } \end{aligned}$	Age	
1921	\$32,740	$\frac{\$ 620}{620}$	1991	0	\$32,120
1992	37,500				69,620
1993	64,970	$\begin{array}{r} 1,800 \\ 1,020 \\ 410 \\ 3,230 \end{array}$	$\begin{aligned} & \begin{array}{l} 911 \\ 1992 \\ 1993 \end{array} \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \\ & 0 \end{aligned}$	131,360
1994	132,840	$\begin{array}{r} 3,120 \\ 1,860 \\ 8,0 \\ 5,850 \end{array}$	$\begin{aligned} & \begin{array}{l} 1992 \\ 1993 \\ 1994 \end{array} \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \\ & 0 \end{aligned}$	258,350
1995	89,490	$\begin{array}{r} 600 \\ 870 \\ 4,770 \\ \hline 6,210 \\ \hline 12,390 \end{array}$	$\begin{aligned} & 1991 \\ & 1992 \\ & 1993 \\ & 1994 \end{aligned}$	$\begin{aligned} & 1 \\ & 3 \\ & 2 \\ & 1 \end{aligned}$	335,450
1996	325,070	$\begin{array}{r} 1,080 \\ 1,970 \\ 17,400 \\ 4.870 \\ 25,320 \end{array}$	$\begin{aligned} & 1991 \\ & 1993 \\ & 1994 \\ & 1995 \end{aligned}$	$\begin{aligned} & 5 \\ & 3 \\ & 2 \\ & 2 \\ & 1 \end{aligned}$	635,200
4997	284,920	$\begin{array}{r} 2,090 \\ 1,940 \\ 2,070 \\ 2,370 \\ 6,840 \\ 8,400 \\ 780 \\ \hline 24,490 \end{array}$	$\begin{aligned} & 1991 \\ & 1992 \\ & 1993 \\ & 1994 \\ & 1995 \\ & 1996 \\ & 1997 \end{aligned}$	$\begin{aligned} & 6 \\ & 5 \\ & 4 \\ & 4 \\ & 2 \\ & 2 \\ & 1 \\ & 0 \end{aligned}$	895,630
1998	\$197,650	$\begin{array}{r} \$ 2,780 \\ 3,400 \\ 2,740 \\ 4,740 \\ 4,160 \\ 12,810 \\ 7,930 \\ \hline 690 \\ \hline 69180 \end{array}$	$\begin{aligned} & 1991 \\ & 1992 \\ & 1993 \\ & 1994 \\ & 1995 \\ & 1996 \\ & 1997 \\ & 1998 \end{aligned}$	$\begin{aligned} & 7 \\ & 6 \\ & 5 \\ & 4 \\ & 3 \\ & 3 \\ & 2 \\ & 1 \\ & 0 \end{aligned}$	\$1,054,100

TABLE NO. 7: ABC ELECTRIC AND GAS COMPANY
PLANT ACCOUNT ACTIVITY (Page 2 of 2)

Year of Activity	Plant Installed	Retirements			Account Balance End of Year
		Cost	Year Installed	Age	
1999	\$287,710	\$1,490	1991	8	
		2,030	1992	7	
		1,850	1993	6	
		19,610	1994	5	
		6,890	1996	3	
		8,970	1997	2	
		6,250	1998	1	
		1,910	1999	0	1,292,810
		49,000			
2000	291,820	3,380	1991	9	
		1,960	1992	8	
		2,730	1993	7	
		2,960	1994	6	
		640	1995	5	
		6,660	1996	4	
		9,730	1997	3	
		14,820	1998	2	
		6,930	1999	1	
		680	2000	0	1,534,140
		50,490			
2001	219,880	4,050	1991	10	
		2,950	1992	9	
		2,360	1993	8	
		3,460	1994	7	
		2,740	1995	6	
		7,820	1996	5	
		16,720	1997	4	
		17,890	1998	3	
		21,080	1999	2	
		3,830	2000	1	1,671,120
		82,900			

Age Intervals

Year	Additions	0-1/2	1/2-11/2	11/2-21/2	21/2-31/2	31/2-4 1/2	41/2-5 1/2	51/2-61/2	61/2-71/2	71/2-81/2	81/2-91/2	91/2-101/2	Total
1991	\$32,740	$\left.\begin{array}{r} 32,740 \\ (620) \end{array}\right\}$	$32,1207$	$\} \begin{array}{l} 32,120 \\ (1,800) \end{array}\right\}$	\} 30,320	$\begin{array}{r} 30,320 \\ (600) \end{array}$	$\begin{aligned} & 29,720 \\ & (1,080) \end{aligned}$	$\begin{aligned} & 28,640 \\ & (2,090) \end{aligned}$	$\begin{aligned} & 26,550 \\ & (2,780) \end{aligned}$	$\begin{aligned} & 23,770 \\ & (1,490) \end{aligned}$	$\begin{array}{r} 2,280 \\ (3,380) \end{array}$	$\begin{aligned} & 18,900 \\ & (4,050) \end{aligned}$	
1992	37,500	37,500	$\begin{aligned} & 37,500 \\ & (1,020) \end{aligned}$	$\begin{aligned} & 36,480 \\ & (3,120) \end{aligned}$	$\begin{array}{r} 33,360 \\ (870) \end{array}$	32,490	$\begin{gathered} 32,490 \\ (1,940) \end{gathered}$	$\begin{aligned} & 30,550 \\ & (3,400) \end{aligned}$	$\begin{aligned} & 27,150 \\ & (2,030) \end{aligned}$	$\begin{aligned} & 25,120 \\ & (1,960) \end{aligned}$	$\begin{aligned} & 23,160 \\ & (2,950) \end{aligned}$		
1993	64,970	$\begin{array}{r} 64,970 \\ (410) \end{array}$	$\begin{aligned} & 64,560 \\ & (1,860) \end{aligned}$	$\begin{aligned} & 62,700 \\ & (4,710) \end{aligned}$	$\begin{aligned} & 57,990 \\ & (1,970) \end{aligned}$	$\begin{aligned} & 56,020 \\ & (2,070) \end{aligned}$	$\begin{aligned} & 53,950 \\ & (2,740) \end{aligned}$	$\begin{aligned} & 51,210 \\ & (1,850) \end{aligned}$	$\begin{aligned} & 49,360 \\ & (2,730) \end{aligned}$	$\begin{aligned} & 46,630 \\ & (2,360) \end{aligned}$			
1994	132,840	$\begin{array}{r} 132,840 \\ (870) \end{array}$	$\begin{array}{r} 131,970 \\ (6,210) \end{array}$	$\begin{aligned} & 125,760 \\ & (17,400) \end{aligned}$	$\begin{array}{r} 108,360 \\ (2,370) \end{array}$	$\begin{array}{r} 105,990 \\ (4,740) \end{array}$	$\begin{aligned} & 101,250 \\ & (19,610) \end{aligned}$	$\begin{aligned} & 81,640 \\ & (2,960) \end{aligned}$	$\begin{aligned} & 78,680 \\ & (3,460) \end{aligned}$				
1995	89,490	89,490	$\begin{aligned} & 89,490 \\ & (4,870) \end{aligned}$	$\begin{aligned} & 84,620 \\ & (6,840) \end{aligned}$	$\begin{aligned} & 77,780 \\ & (4,160) \end{aligned}$	73,620	$\begin{array}{r} 73,620 \\ (640) \end{array}$	$\begin{aligned} & 72,980 \\ & (2,740) \end{aligned}$					
1996	325,070	325,070	$\begin{array}{r} 325,070 \\ (8,400) \end{array}$	$\begin{aligned} & 316,670 \\ & (12,810) \end{aligned}$	$\begin{array}{r} 303,860 \\ (6,890) \end{array}$	$\begin{array}{r} 296,970 \\ (6,660) \end{array}$	$\begin{array}{r} 290,310 \\ (7,820) \end{array}$						
1997	284,920	$\begin{array}{r} 284,920 \\ (780) \end{array}$	$\begin{array}{r} 284,140 \\ (7,930) \end{array}$	$\begin{array}{r} 276,210 \\ (8,970) \end{array}$	$\begin{array}{r} 267,240 \\ (9,730) \end{array}$	$\begin{aligned} & 257,510 \\ & (16,720) \end{aligned}$							
1998	197,650	$\begin{array}{r} 197,650 \\ (620) \end{array}$	$\begin{array}{r} 197,030 \\ (6,250) \end{array}$	$\begin{aligned} & 190,780 \\ & (14,820) \end{aligned}$	$\begin{aligned} & 175,960 \\ & (17,890) \end{aligned}$								
1999	287,710	$\begin{array}{r} 287,710 \\ (1,910) \end{array}$	$\begin{array}{r} 285,800 \\ (6,930) \end{array}$	$\begin{aligned} & 278,870 \\ & (21,080) \end{aligned}$									
2000	291,820	$\begin{array}{r} 291,820 \\ (680) \end{array}$	$\begin{array}{r} 291,140 \\ (3,830) \end{array}$										
2001	219,880	219,880											
Total	posures	\$1,964,590	\$1,738,820	\$1,404,210	\$1,054,870	\$852,920	\$581,340	\$265,020	\$181,740	\$95,520	\$45,440	\$18,900	\$8,203,370
Total	tirements	$(5,890)$	$(47,300)$	$(91,550)$	$(43,880)$	$(30,790)$	$(33,830)$	$(13,040)$	$(11,000)$	$(5,810)$	$(6,330)$	$(4,050)$	$(293,470)$

TABLE NO. 9; ABC ELECTRIC AND GAS COMPANY OBSERVED LIFE TABLE

Percent Survivor Curve

Chart No. 5 shows the historical survivor curve as ploted from the observed life table. Note that it does not extend to zero percent surviving. This is often the case due to the long lives of utility plant. As implied in the illustrations of the Original-Group method, a curve extending to zero percent surviving is needed to calculate average service life. Also, the historical curve is irregular. This, too, is a common occurrence. Therefore, it must be smoothed as well as extended. This can be done in three ways:

1. By matching the stub historical curve to established sets of survivor curves
2. By using mathematics, and
3. By observation

These procedures will be illustrated in the next example.
The two simplified examples of actuarial methods that have been presented, the Original-Group Method and the Annual-Rate Method, are again used but the data, while hypothetical, are more realistic in that they are representative of the actual property records available to the depreciation analyst. Examination of Tables 7 and 8 discloses that in the band of years that were studied, all data as to additions and retirements were available. However, in actual practice the data available are not so complete.

Data Analysis (Life) Actuarial Analysis Graph

Account: 353

Scenario: Oncor Actuarial 2009
4. Actual Data \quad L0.546.00

Data Analysis (Life) SPR

Simulated Plant - Record Analysis (SPR) - simulated the retirement pattern of historical assets and matches simulated balance against plant balances (or retirements)

- Uses "unaged" data (e.g. gross additions and account balances)

Data Analysis (Life) Unaged Data

UNAGED DATA

END-OF-YEAR BALANCES

```
VINT INSTS 1983 1984 1985 1986 1987 1988
    1983 220
    1984250
    1985270
    1986 285
    1987 300
    1988 320
    1989350
    1990}37
    1991 390
    1992405
    1993450
    1994480
    1995500
    BALANCE 220 470 740 1,025 1,325 1,643 1,986 2,347 2,708 3,061 3,434 3,801 4,150
```


Life Analysis Simulated Plant Record (SPR)

Only information known are plant balances through time and gross additions and/or retirements

- Generally applies standardized lowa Survivor Curves against gross additions to calculate plant balance in a given year
- Compares multiple-year calculated plant balances against actual balances to determine best fitting life/curve combination

Simulated Plant Record (SPR) Ranking Curves

- SPR ranks curves based on the closeness of simulated to actual balances (retirements)
- Closeness is determined by the Sum of the Squared Differences (SSD) between simulated and actual balances (retirements)

Simulated Plant Record (SPR) Conformance Index (CI)

SSD
MSD = SSD /n
CI = Avg. Bal / SQRT (MSD)

- Bauhan's Scale:
over 75 excellent
50 to 75 good
25 to 50 fair
under 25 poor

Simulated Plant Record (SPR) Retirement Experience Index (REI)

- Percent retired from the oldest vintage at the end of the most recent year in the experience band according to the specified lowa curve
- Bauhan's Scale:
over 75 excellent
50 to 75 good
33 to 50 fair
17 to 33 poor
under 17 valueless

Simulated Plant Record (SPR) Retirement Experience Index (REI)

REI indicates account maturity according to the specified survivor curve

- REI $=100 \%$ means the oldest vintage has been through a full life cycle
- REI $<100 \%$ indicates a stub survivor curve
- E.g., a 40% REI indicates that only 40% of the oldest vintage has retired

Data Analysis (Life) SPR Table Example

Simulated Plant Record Analysis
Oncor Electric Delivery

Account: 364 Version: Oncor SPR data 2009 Method: Simulated Balances					
No. of Test Points:	30	Intervat: 0		On Band: 198	
	$\begin{aligned} & \text { Avg } \\ & \text { Service } \\ & \text { Hife } \end{aligned}$	Sum of Squared Ditferences	Index of Variation	Contormance Index	Retirement Experience Index
R0. 5	44.2	$1.44 \mathrm{E}+16$	29.5858	33.80	96.88
Lo	48.4	1.72E+16	32.3555	30.91	${ }^{85.82}$
R1	39.7	1.76E+16	32.6995	30.58	100.00
10.5	43.8	$2.07 \mathrm{E}+16$	35.4655	28.20	92.28
R1. 5	37.0	2,15E+16	36.1828	27.64	100.00
so	39.2	$2.25 \mathrm{E}+16$	36.9537	27.06	100.00
L1	40.3	$2.56 \mathrm{E}+16$	39.4323	25.36	96.76
s0.5	36.8	$2.63 \mathrm{E}+16$	39.9997	25.00	100.00
R2	34.8	$2.67 \mathrm{E}+16$	40.2528	24.84	100.00
11.5	37.9	$2.91 \mathrm{E}+16$	42.0798	23.76	98.77
R2.5	33.2	3.03E+16	42.8939	23.31	100.00
S1	34.8	3.14E+16	43.7146	22.88	100.00
L2	35.7	$3.41 \mathrm{E}+16$	45.5516	21.95	99.80
S1.5	33.6	$3.45 \mathrm{E}+16$	45.7723	21.85	100.00
R3	31.8	$3.45 \mathrm{E}+16$	45.8087	21.83	100.00
L2.5	34.1	3.63E+16	46.9877	21.28	99.95
S2	32.5	3.82E+16	48.1861	20.75	100.00
S6	29.2	$3.86 \mathrm{E}+16$	48.4584	20.64	100.00
R4	30.6	$3.91 \mathrm{E}+16$	48.7361	20.52	100.00
L3	32.9	$3.95 \mathrm{E}+16$	49.0198	20.40	100.00
S2.5	32.0	3.96E+16	49.0622	20.38	100.00
S5	29.3	$4.04 \mathrm{E}+16$	49.5539	20.18	100.00
R5	29.6	$4.06 \mathrm{E}+16$	49.7022	20.12	100.00
S3	31.2	4.14E+16	50.1418	19.94	100.00
L5	30.0	4.15E+16	50.2068	19.92	100.00
14	31.0	4.15E+16	50.2120	19.92	100.00
S4	30.1	4.19E+16	50.4905	19.81	100.00
so	31.2	$5.74 \mathrm{E}+16$	59.0770	16.93	100.00

Data Analysis (Life)Benefits of Actuarial analysis

More information available for analysis

- Able to look at different periods of experience
Easier to understand results
- However, more information is needed for the analysis - some companies do not capture that level of detail in their fixed asset system

Data Analysis (Life)Benefits of SPR analysis

- Less information is needed for the analysis companies with only Form 1 type of information available can still perform statistical life analysis
- Less complex calculations
- However, it is harder to understand the results
- And there is less ability to independently study at different periods

Data Analysis (Life)Life Span Calculation

- The following tables demonstrate the basic and fully implemented life span calculation for a generating unit.
- The first table demonstrates the basic recovery of the initial cost over the life of the unit
- The second table demonstrates all costs that will be incurred over the life of the unit and its recovery.
- Not all of the conceptually appropriate pieces of the calculation are generally accepted by commissions (e.g. interim additions - although conceptually correct - are not widely accepted)

** A.G.A./EEI DEPRECIATION ACCOUNTING COURSE ** LIFE SPAN PROPERTY

[1]	[2]	[3]	[4]	[5]	[6]
	Interim	Interim Net	Terminal	Terminal Net	Interim
Year	Retirements	Salvage	Retirements	Salvage	Additions
	\$	\$	\$	\$	\$

1999 0 0

2000	0	-	0	0	100,000,000
2001	750,000	$(150,000)$	0	0	2,250,000
2002	761,250	$(152,250)$	0	0	2,283,750
2003	772,669	$(154,534)$	0	0	2,318,006
2004	784,259	$(156,852)$	0	0	2,352,776
2005	796,023	$(159,205)$	0	0	2,388,068
2006	807,963	$(161,593)$	0	0	2,423,889
2007	820,082	$(164,016)$	0	0	2,460,247
2008	832,384	$(166,477)$	0	0	2,497,151
2009	844,869	$(168,974)$	0	0	2,534,608
2010	857,542	$(171,508)$	0	0	2,572,627
2011	870,406	$(174,081)$	0	0	2,611,217
2012	883,462	$(176,692)$	0	0	2,650,385
2013	896,714	$(179,343)$	0	0	2,690,141
2014	910,164	$(182,033)$	0	0	2,730,493
2015	923,817	$(184,763)$	0	0	2,771,450
2016	937,674	$(187,535)$	0	0	2,813,022
2017	951,739	$(190,348)$	0	0	2,855,217
2018	966,015	$(193,203)$	0	0	2,898,046
2019	980,505	$(196,101)$	0	0	2,941,516
2020	995,213	$(199,043)$	0	0	2,985,639
2021	1,010,141	$(202,028)$	0	0	3,030,424
2022	1,025,293	$(205,059)$	0	0	3,075,880
2023	1,040,673	$(208,135)$	0	0	3,122,018
2024	1,056,283	$(211,257)$	0	0	3,168,849
2025	1,072,127	$(214,425)$	0	0	3,216,381
2026	1,088,209	$(217,642)$	0	0	3,264,627
2027	1,104,532	$(220,906)$	0	0	3,313,596
2028	1,121,100	$(224,220)$	0	0	3,363,300
2029	1,137,917	$(227,583)$	0	0	3,413,750
2030	1,154,985	$(230,997)$	0	0	3,464,956
2031	1,172,310	$(234,462)$	0	0	3,516,930
2032	1,189,895	$(237,979)$	0	0	3,569,684
2033	1,207,743	$(241,549)$	0	0	3,623,230
2034	1,225,859	$(245,172)$	0	0	3,677,578
2035	1,244,247	$(248,849)$	0	0	3,732,742
2036	1,262,911	$(252,582)$	0	0	3,788,733
2037	1,281,855	$(256,371)$	0	0	3,845,564
2038	1,301,082	$(260,216)$	0	0	3,903,247
2039	1,320,599	$(264,120)$	0	-	3,961,796
2040	0	-	178,721,025	$(17,872,103)$	0

Interim Net Salvage $=$	$\mathbf{- 2 0 . 0 \%}$
Terminal Net Salvage $=$	$-\mathbf{1 0 . 0 \%}$
Average Net Salvage $=$	-11.8%
Interim Retirement Rate $=$	0.7500%
Interim Addition Factor $=$	3.0
Depreciation Rate =	4.493%

$39,360,513(7,872,103) \quad 178,721,025(17,872,103) \quad 218,081,538$
5,426,789,391

Data Analysis (NS) Salvage \& Cost Of Removal Analysis

- Net salvage is analyzed by comparing the original cost of assets at their in-service dates with the removal cost of those assets at the end of their lives.
- The assumption is that the same relationship between the cost at in-service and removal cost at retirement will exist for assets that are still in service.
- Rolling bands and shrinking bands are normally used to smooth the pattern of retirement and timing differences between the recording of gross salvage, removal cost and retirements.

Salvage \& Cost Of Removal Analysis

- Calculation:

$$
\text { Net Salvage } \%=\frac{\$ \text { Gross Salvage }-\$ \text { Removal Cost }}{\text { \$Retirements }}
$$

- Ratio allows application to different plant levels
- Components reflect different price levels
- Numerator: retirement-year dollars
- Denominator: installation-year dollars
- Net salvage ratio used to calculate depreciation expense (Remaining Life formula shown).

$$
\text { Depr. } \operatorname{Exp}=\frac{\text { Plant }-(\text { Plant } \times \text { Net Salvage \% })-\text { Depr Reserve }}{\text { Average RemainingLife }}
$$

Salvage \& Cost Of Removal Analysis

- Assume the asset cost is $\$ 100$ and there is a 5% gross salvage value and 10% removal cost. The depreciable life is five years; net salvage accrual is $\$ 1$ per year thus the depreciation expense per year is $\$ 21$. At the end of the fifth year the asset would be retired, bringing both the plant balance and the accumulated depreciation to zero.

Net Salvage $\%=((\$ 5-\$ 10)) / \$ 100=((\$ 5)) / \$ 100=-5 \%$
Net Salvage $($ Annual $)=(\$ 100(-5 \%)) / 5=((\$ 5)) / 5=\$ 1$
Plant $=\$ 100 / 5=\$ 20$
Plant plus Net Salvage accrual $=\$ 20+\$ 1=\$ 21$

Data Analysis (NS) Example of Shrinking and Rolling Bands

ABC ELECTRIC																
NET SALVAGE ACTIVITY																
FERC	Activity		Gross	Removal	Net	Gross	Removal	Net	3- Yr Net	4- Yr Net	5- Yr Net	6- Yr Net	7- Yr Net	8- Yr Net	9- Yr Net	10- Yr Net
Account	Year	Retirements	Salvage	Cost	Salvage	Salvage \%	Cost \%	Salvage \%	Salv. \%							
(a)	(b)	(c)	(d)	(e)	(f)=(d)-(e)	(g) $=$ (d)/(c)	(h)=(e)/(c)	(i)=(f)/(c)	(j)*	(k)*	(I)*	(m)*	(n)*	(0)*	(p)*	(q)*
364	1992	1,573,652	558,113	800,269	$(242,156)$	35.47\%	50.85\%	-15.39\%								
364	1993	806,257	316,671	469,111	$(152,440)$	39.28\%	58.18\%	-18.91\%								
364	1994	641,472	290,008	412,413	$(122,405)$	45.21\%	64.29\%	-19.08\%	-17.11\%							
364	1995	539,845	223,377	305,407	$(82,030)$	41.38\%	56.57\%	-15.20\%	-17.96\%	-16.82\%						
364	1996	402,962	185,098	277,754	$(92,656)$	45.93\%	68.93\%	-22.99\%	-18.75\%	-18.80\%	-17.45\%					
364	1997	916,484	385,559	541,113	$(155,554)$	42.07\%	59.04\%	-16.97\%	-17.76\%	-18.10\%	-18.30\%	-17.36\%				
364	1998	380,396	130,002	198,223	$(68,221)$	34.18\%	52.11\%	-17.93\%	-18.62\%	-17.79\%	-18.08\%	-18.26\%	-17.40\%			
364	1999	312,886	100,271	179,266	$(78,995)$	32.05\%	57.29\%	-25.25\%	-18.81\%	-19.65\%	-18.70\%	-18.78\%	-18.81\%	-17.84\%		
364	2000	1,272,713	137,709	410,717	$(273,008)$	10.82\%	32.27\%	-21.45\%	-21.37\%	-19.98\%	-20.35\%	-19.62\%	-19.54\%	-19.44\%	-18.51\%	
364	2001	385,649	68,840	264,530	$(195,690)$	17.85\%	68.59\%	-50.74\%	-27.78\%	-26.19\%	-23.61\%	-23.54\%	-22.47\%	-22.02\%	-21.58\%	-20.23\%
364	2002	619,695	111,918	266,921	$(155,003)$	18.06\%	43.07\%	-25.01\%	-27.38\%	-27.12\%	-25.95\%	-23.83\%	-23.75\%	-22.80\%	-22.36\%	-21.92\%
364	2003	1,394,795	149,822	385,783	$(235,961)$	10.74\%	27.66\%	-16.92\%	-24.44\%	-23.41\%	-23.55\%	-23.06\%	-22.00\%	-22.07\%	-21.48\%	-21.25\%
364	2004	875,785	123,820	592,737	$(468,917)$	14.14\%	67.68\%	-53.54\%	-29.75\%	-32.22\%	-29.21\%	-28.95\%	-28.15\%	-26.49\%	-26.28\%	-25.43\%
364	2005	487,067	90,346	247,802	$(157,456)$	18.55\%	50.88\%	-32.33\%	-31.27\%	-30.12\%	-32.24\%	-29.51\%	-29.26\%	-28.51\%	-26.92\%	-26.69\%
364	2006	585,872	89,075	268,387	$(179,312)$	15.20\%	45.81\%	-30.61\%	-41.34\%	-31.15\%	-30.19\%	-32.02\%	-29.62\%	-29.39\%	-28.70\%	-27.22\%
364	2007	818,696	108,779	387,731	$(278,952)$	13.29\%	47.36\%	-34.07\%	-32.55\%	-39.19\%	-31.73\%	-30.86\%	-32.34\%	-30.19\%	-29.96\%	-29.32\%
364	2008	1,483,141	140,965	435,118	$(294,153)$	9.50\%	29.34\%	-19.83\%	-26.06\%	-26.96\%	-32.44\%	-28.60\%	-28.25\%	-29.55\%	-28.25\%	-28.14\%
364	2009	1,043,838	165,556	552,266	$(386,710)$	15.86\%	52.91\%	-37.05\%	-28.69\%	-28.97\%	-29.34\%	-33.35\%	-29.92\%	-29.50\%	-30.57\%	-29.27\%
364	2010	554,501	200,785	420,235	$(219,450)$	36.21\%	75.79\%	-39.58\%	-29.22\%	-30.24\%	-30.28\%	-30.48\%	-33.94\%	-30.66\%	-30.21\%	-31.17\%
364	2011	964,573	124,805	516,482	$(391,677)$	12.94\%	53.55\%	-40.61\%	-38.93\%	-31.93\%	-32.29\%	-32.11\%	-32.13\%	-34.88\%	-31.83\%	-31.35\%
Total 1992-2011		16,060,277	3,701,519	7,932,265	$(4,230,746)$	23.05\%	49.39\%	-26.34\%								

Data Analysis (NS) Salvage \& Cost Of Removal Analysis

Analyze Historical Gross Salvage \& Cost of Removal (COR).

Adjust data for unusual (not representative) events.
Estimate Future Salvage \& COR.
Combine Historical and Future Salvage estimates (if using whole life) - Use Future Salvage estimate if using Remaining life technique.

Adjust estimate as Needed for Expected Future Occurrences.

Data Analysis (NS) Age Sensitivity

Gross salvage may decrease with age Generally, cost of removal increases with age (due to inflation, additional work rules, etc.)

- Therefore, the later an asset retires, the more "negative" the net salvage (i.e. Gross salvage decreases and cost of removal increases - net salvage is gross salvage minus cost of removal).

Data Analysis (NS) Unusual Transactions

Third-Party Reimbursements

- Sales
- Atypical events ("Outliers")
- Changing systems, work processes, or environmental conditions
- Special programs (e.g. AMR meters)

Life and NS Evaluation

The end result of this step are life, curve and net salvage recommendations.

- All factors gathered during the preceding steps are put together and judgment is used to select the final recommendations.
This is where the experience of the analyst is most needed.

Life and NS Evaluation

While the actual experience of the utility being analyzed is the basis for recommendations, an analyst can ask the following questions in order to determine if more research is necessary to validate the selections.

- Are selections reasonable based on the analyst's experience?
- Are selections reasonable based on industry norms?
- Are changes in recommendations from approved lives and net salvage understandable based on changing conditions at the utility?

Choices in Depreciation - the Depreciation "System"

Choosing a "Depreciation System"

Methods of Allocation for Group Application Procedures for Group Application
Techniques for Group Application

Depreciation Methods, Procedures And Techniques

Methods

Methods refers to the pattern of depreciation in relation to the accounting periods

- Straight-line
- Accelerated
- Deferred
- Miscellaneous

Procedures

Procedures refers to the grouping of assets or the form of the depreciable base

- Item or Unit
- Broad Group (also known as ALG or Average Life Group)
- Vintage Group
- Equal Life Group

Techniques

Techniques refers to the portion of the average service life used in depreciation calculation

- Whole Life (Location or Total Life Basis)
- Remaining Life (Location or Total Life Basis)

To Summarize Depreciation Methods, Procedures And Technique

- Methods refers to the pattern of depreciation in relation to the accounting periods
- Procedures refers to the grouping of assets or the form of the depreciable base

Techniques refers to the portion of the average service life used in depreciation calculation

ALG versus ELG Example

Two Assets - \$10 each
One lasts 2 years, the other 8 years

- Average life of 5 years
- ALG rate of 20%

Depreciation Calculations

- The calculations are very straight-forward
- The prior decision on the depreciation system is necessary for the appropriate calculations to be made.
- Care must be taken to have appropriate quality controls to ensure accurate data, analysis and calculations.
- Calculations should be made at the end of the process to keep the results from driving the selections.

Depreciation Rate Formula

- Whole Life

Rate, $\%=\frac{\mathrm{PB}-\mathrm{S}}{\mathrm{ASL}}$

Remaining Life

$$
\text { Rate, } \%=\frac{\mathrm{PB}-\mathrm{S}}{\mathrm{ASL}}-\frac{\mathrm{BR}-\mathrm{CTR}}{\mathrm{ARL}}
$$

$$
\text { Rate, } \%=\frac{P B-S-B R}{A R L}
$$

Where PB is Depreciable Plant Balance, \%
S is Net Salvage, \%
ASL is Average Service Life, Years
BR is Depreciation Book Reserve, \%
CTR is Calculated Theoretical Reserve, \%
ARL is Average Remaining Life, Years

Depreciation Rate Formula

Annual depreciation accrual rate using the Whole-Life Technique:

Original Cost of Plant (i.e. 100\%) - Salvage\% + Removal Cost\%
Average Service Life (years)

Annual depreciation accrual rate using the Remaining-Life Technique:

Original Cost of Plant (i.e. 100\%) - Salvage $\%$ + Removal Cost $\%$ - Reserve $\%$
Average Remaining-Life in years

The Depreciation Formulas

Whole Life Annual Expense
Annual Depreciation Expense $=\underline{\text { Original Cost of Plant }--(\text { Salvage }- \text { Removal Cost })}$ Average service life

Remaining Life Annual Expense

Annual Depreciation Expense $=\underline{\text { Original Cost of Plant }-(\text { Salvage }- \text { Removal Cost })-\text { Reserve }}$
Average Remaining Life

The Depreciation Formulas Examples

Whole-Life Technique:
Data available (hypothetical):
1996 - Number of units installed this year 100,000 units
1996 - Plant cost of units installed \$ 100,000 or 100\%
1996 - Estimated salvage \$ 13,000 or 13\%
1996 - Estimated cost of removal \$3,000 or 3\%
1996 - Estimated average service life 12 years
The factors in the equation are expressed in percent of plant cost

$$
(100 \%-13 \%+3 \%)=90 \% / 12 \text { years }=7.5 \% \text { per year }
$$

The Depreciation Formulas Examples

Remaining-Life Technique (continuing with previous Whole-Life technique data):
Data available (hypothetical):
2001 - Attained age of surviving plant 6 years (1996-2001)
1996-2001 - Number of units retired 25,000
2001 — Plant balance $\$ 75,000$ or 100%
2001 - Estimated salvage \$ 9,750 or 13\%
2001 - Estimated cost of removal \$ 2,250 or 3\%
2001 - Accumulated Depreciation Reserve Balance in the account
\$ 16,875 or 22.5\% (\$16,875/\$75,000)
2001 - Estimated average Remaining-Life 9 years
$(100 \%-13 \%+3 \%-22.5 \%)=67.5 \% / 9$ years $=7.5 \%$ per year

The Depreciation Formulas Examples

Using the Remaining-Life formula:
If the book accumulated depreciation reserve were 27% instead of 22.5% then the annual depreciation accrual rate would be 7.0% per year, instead of 7.5%.

$$
(100 \%-13 \%+3 \%-27 \%)=63.0 \% / 9 \text { years }=7.0 \% \text { per year }
$$

Using the Remaining-Life formula: If the book accumulated depreciation reserve were 18% instead of 22.5% then the annual depreciation accrual rate would be 8.0% per year, instead of 7.5%.

$$
(100 \%-13 \%+3 \%-18 \%)=72.0 \% / 9 \text { years }=8.0 \% \text { per year }
$$

What Is A Theoretical Reserve?

Basically, it is a calculation of the amount you "should" have in your depreciation reserve

"Simplified" Formula for Calculated Theoretical Reserve

For each vintage of plant, a theoretical reserve ratio, or calculated accrued depreciation ratio (CADR) can be calculated from these parameters:

$$
C A D R=1-\frac{R L}{A S L}
$$

- The theoretical reserve for each vintage of plant can then be calculated as:

$$
\begin{gathered}
C A D=\text { Original Cost } \times(1-N S \%) \times C A D R \\
C A D=\text { Original Cost } \times(1-N S \%) \times\left(1-\frac{R L}{A S L}\right)
\end{gathered}
$$

Evaluating Depreciation Studies

Depreciation Study Process

Source: Introduction to Depreciation for Public Utilities and Other Industries, AGA EEI, 2013
*Although not specifically noted, the mathematical analysis may need some level of input from other sources (for example, to determine analysis bands for life and adjustments to data used in all analysis)

Initial Review

- How Conducted
- How Long Since Last Study
- Level of Expertise
- Magnitude of Change in Depreciation Rates
- Issues in Regulatory Proceedings

Regulatory Considerations

- History Can Mislead
- Evaluation Can Surface Issues
- Types \& Treatment of Salvage and Cost of Removal
- Impact of Depreciation Changes on Ratepayers (should not be a focus)

Information and Data

- Accounting Practices
- Property Details
- Addition, Retirement, Cost of Removal and Salvage processes
- How Equipment is Designed and Operated
Discussions with Office \& Field Personnel

Data Considerations Accounting Concepts to Understand

1. Account numbering systems
2. Retirement unit definitions
3. Depreciation property groups
4. Depreciation provision calculations
5. Methods of in-service dating and of pricing retirements
6. The process of determining and recording removal cost from projects
7. The method of pricing reused material
8. The method and recording sale of scrap
9. How the removal cost component of depreciation rates is segregated (if applicable)
10.Policy or practice related to third party reimbursements
11.Transfers and adjustments
12.Sales and purchases
13.Treatment of Asset Retirement Obligations for regulatory purposes

Data Considerations Understanding Causes Of Retirement

- PHYSICAL
- Wear and tear
- Decay

QUANTIFIABLE

- Action of the elements
- NON-PHYSICAL
- Inadequacy
- Obsolescence
- Changes in the art

NON-QUANTIFIABLE

- Changes in demand
- Requirements of public authorities

Data Considerations Policy

Plant accounting capitalization policies and work flow

- Operations policies
- Accounting policies
- Aging and Pricing Policies
- Retirements
- Salvage
- Cost of removal segregation

Accounting Practices

Retirement Unit Definitions
Dating \& Pricing Retirements
Removal Labor Segregation

- Third-Party Reimbursements
- Pricing Reused Materials
- Sale of Scrap \& Used Equipment
- Other

Significance of Accounting Practices

Study Measures Flow of Amounts Through Accounting Records

- Quality of Field Reporting
- Attributes of the Accounting System

Retirement Unit Definitions (level and changes over time)

Property Details - Examples

- Types of Transmission Poles
- Insulator Material
- Gas Main and Service Material
- Extent of Electronic Meters
- Office Furniture \& Equipment Types
- Stores \& Communications Equipment Types

Account Content

- Life Differences within an Account Technology Change
- Lease/Buy Decisions

Sales \& Reimbursements

Sales are Generally Rare

- Where are Reimbursements Recorded on the Books (Against Plant or Reserve)

SME Interviews

- Subject Matter Expert ("SME") opinions and experience is an important part of a study
- Changes in operations or property types may not be readily evident in the data analysis
- Future plans that may impact the life of the assets will not be seen in the historical data

Uniqueness of Entities

Physical Conditions

- Operation \& Maintenance Practices
- Accounting Practices
- Management Policy
- Regulatory Policy

Technological Improvements

Street Lighting

- Meters
- UG Cable

Sensitivity to Age of Retirements

- Net Salvage Factors Reflect Cost Escalation Depending on Age
${ }^{\circ}$ Current, Age of Survivors
- Past, Age of Past Retirements
- Average, Age Equal to Average Service Life
- Future, Age Equal to Probable Life

Escalation Rate \& Time

- Progression of Material Types
- General Purpose Buildings

Life Analysis Methods

- Identification \& Explanation of Trends
- Strengths and weaknesses of Actuarial and SPR Methods Influence of Sporadic Additions \& Retirements

Appendix Examples of "pitfalls" in analysis

Example 1 - Not enough Data

Client only had 11 years of actuarial data - Current approved life is a 37 L2

Account: 364.0
Scenario: Example Utility

Account: 364.0
Scenario: Example Utility

- Actual Data \quad R2 47.00

Full SPR Dataset

Example 2 - Non Homogeneous Assets

Sometimes lives of different

 assets interact with each other in an analysis and could cause less than appropriate results.Here's an example.

Account: 369 Version: ABC SPR Method: Simulate	R 369 ed Balanc				
No. of Test Points:	54	Interval: 0		on Band: 19	
Dispersion	Avg Service Life	Sum of Squared Diffrennces	Index of Varlation	Contormance Indax	Retirement Experlence Index
R0.5	43.8	$3.81 \mathrm{E}+14$	29.5808	33.81	64.17
L0	48.1	$4.19 \mathrm{E}+14$	31.0210	32.24	62.18
R1	38.9	$4.89 \mathrm{E}+14$	33.4982	29.85	77.67
L0.5	43.1	$5.00 \mathrm{E}+14$	33.8831	29.51	69.60
so	38.0	$5.73 \mathrm{E}+14$	36.2663	27.57	78.74
L1	39.3	$6.12 \mathrm{E}+14$	37.4778	26.68	76.75
R1.5	35.9	$6.37 \mathrm{E}+14$	38.2124	26.17	89.59
s0.5	35.7	$7.00 \mathrm{E}+14$	40.0748	24.95	87.08
L1.5	36.6	$7.35 \mathrm{E}+14$	41.0649	24.35	83.54
R2	33.8	$8.31 \mathrm{E}+14$	43.6730	22.90	97.33
S1	33.6	$8.59 \mathrm{E}+14$	44.3817	22.53	94.46
L2	34.4	$8.83 \mathrm{E}+14$	45.0095	22.22	89.18
\$1.5	32.4	$9.90 \mathrm{E}+14$	47.6607	20.98	97.73
12.5	32.9	$1.00 \mathrm{E}+15$	47.9914	20.84	93.51
R2.5	32.3	$1.01 \mathrm{E}+15$	48.0385	20.82	99.49
S2	31.3	1.13E +15	50.9780	19.62	99.62
13	31.4	1.14E+15	51.1847	19.54	97.08
R3	30.8	1.19E+15	52.2288	19.15	100.00
\$2.5	30.8	$1.24 \mathrm{E}+15$	53.2329	18.79	99.87
\$3	30.1	$1.33 \mathrm{E}+15$	55.3298	18.07	100.00
14	29.7	$1.39 \mathrm{E}+15$	56.4682	17.71	99.94
R4	29.8	$1.41 \mathrm{E}+15$	56.9066	17.57	100.00
54	29.0	$1.51 \mathrm{E}+15$	58.8640	16.99	100.00
L5	29.1	$1.55 \mathrm{E}+15$	59.6388	16.77	100.00
R5	28.7	$1.59 \mathrm{E}+15$	60.3700	16.56	100.00
S5	28.9	1.63E+15	61.1628	16.35	100.00
56	28.4	1.72E+15	62.7871	15.93	100.00
sa	31.0	$2.80 \mathrm{E}+15$	80.0851	12.49	100.00

What life would you select?

I created the dataset so I know

 what the actual lives are...
Example 3 - Lagging Additions or Retirements

What happens when additions or retirements are not recorded in a timely manner?

Base Case

						2- yr	3- yr	4- yr	5- yr	6- yr	7- yr
				Net							
Fiscal Year	Retirements	Gross Salvage	Removal Cost	Salvage	Salv. \%						
38000-Serv											
2005	320,052.53	0.00	830,112.72	$(830,112.72)$	-259.4\%						
2006	3,203,013.70	0.00	244,202.95	$(244,202.95)$	-7.6\%	-30.5\%					
2007	3,669,690.39	0.00	494,119.17	$(494,119.17)$	-13.5\%	-10.7\%	-21.8\%				
2008	5,828,262.84	0.00	263,967.27	$(263,967.27)$	-4.5\%	-8.0\%	-7.9\%	-14.1\%			
2009	3,705,544.79	0.00	137,289.95	$(137,289.95)$	-3.7\%	-4.2\%	-6.8\%	-6.9\%	-11.8\%		
2010	3,944,623.88	0.00	271,541.40	(271,541.40)	-6.9\%	-5.3\%	-5.0\%	-6.8\%	-6.9\%	-10.8\%	
2011	4,837,504.69	0.00	2,804,181.48	$(2,804,181.48)$	-58.0\%	-35.0\%	-25.7\%	-19.0\%	-18.1\%	-16.7\%	-19.8\%
	Plant Balance	727,997,634.59									

Additions Lag

38000-Serv											
2005	320,052.53	0.00	830,112.72	$(830,112.72)$	-259.4\%						
2006	3,203,013.70	0.00	244,202.95	$(244,202.95)$	-7.6\%	-30.5\%					
2007	3,669,690.39	0.00	494,119.17	$(494,119.17)$	-13.5\%	-10.7\%	-21.8\%				
2008	5,828,262.84	0.00	263,967.27	$(263,967.27)$	-4.5\%	-8.0\%	-7.9\%	-14.1\%			
2009	3,705,544.79	0.00	137,289.95	$(137,289.95)$	-3.7\%	-4.2\%	-6.8\%	-6.9\%	-11.8\%		
2010	3,944,623.88	0.00	271,541.40	$(271,541.40)$	-6.9\%	-5.3\%	-5.0\%	-6.8\%	-6.9\%	-10.8\%	
2011	4,837,504.69	0.00	2,804,181.48	$(2,804,181.48)$	-58.0\%	-35.0\%	-25.7\%	-19.0\%	-18.1\%	-16.7\%	-19.8\%
	nt balance	464,995,147.16									

Retirement Lag

38000-Serv											
2005	320,052.53	0.00	830,112.72	$(830,112.72)$	-259.4\%						
2006	3,203,013.70	0.00	244,202.95	$(244,202.95)$	-7.6\%	-30.5\%					
2007	183,484.52	0.00	494,119.17	$(494,119.17)$	-269.3\%	-21.8\%	-42.3\%				
2008	734,164.62	0.00	263,967.27	$(263,967.27)$	-36.0\%	-82.6\%	-24.3\%	-41.3\%			
2009	1,139,898.88	0.00	137,289.95	$(137,289.95)$	-12.0\%	-21.4\%	-43.5\%	-21.7\%	-35.3\%		
2010	535,919.44	0.00	271,541.40	$(271,541.40)$	-50.7\%	-24.4\%	-27.9\%	-45.0\%	-24.3\%	-36.6\%	
2011	493,005.31	0.00	2,804,181.48	$(2,804,181.48)$	-568.8\%	-298.9\%	-148.1\%	-119.8\%	-128.7\%	-67.0\%	-76.3\%
	nt Balance	786,640,617.17									

Additions Lag - Approved Curve

Additions Lag - Best Curve

Retirement Lag - Approved Curve

Retirement Lag - Best Curve

Example 4 - Capital Constraints

Account 356 (Transmission Conductor) - Approved Life 50 R2

ACCOUNT 356
 ADDITIONS AND BALANCES

ADDITIONS $-\infty$ BALANCE

ACCOUNT 356

REGULAR RETIREMENTS (\% OF ADDITIONS)

■RETIREMENTS (\%)

Current Actuarial Analysis Results

When adjusted to normalize the capital redirection

Narrow Band

Account: 356
Scenario: Example Utility Actuarial Cap Spend @2016

- Actual Data
- R0.5 48.00

Wide Band

Account: 356
Scenario: Example Utility Actuarial Cap Spend (@) 2016
a Actual Data \quad - R1 55.00

SPR

Questions/Comments?

