Introduction to the water sector: structure, economics, and regulation

© Janice A. Beecher, Ph.D. INSTITUTE OF PUBLIC UTILITIES | MSU ipu.msu.edu | beecher@msu.edu *Please do not distribute by electronic or other means or cite without permission. Revised 8/9/2024*

MICHIGAN STATE UNIVERSITY

How public utilities compare

Introduction to water

CartoonChurch.com

Structure of the U.S. water sector

*Finest level of geographic resolution is within the county served

Source: Institute of Public Utilites (MSU) 2019 http://ipu.msu.edu/

- U.S. regulates nearly 50,000 community water systems for environmental and public health purposes
- Utilities (the administrative unit) may own and operate multiple water systems
- More than 90% of the U.S. population has community water service
- Industry is fragmented but bifurcated in terms of system size
- Majority of systems serve small populations, but most U.S. water customers are served by larger municipal systems
- Water systems are almost evenly divided in terms of governmental and nongovernmental ownership

Big water: publicly traded investor-owned water utilities

IPUMSU

Economic characteristics

- Most water utilities are vertically integrated production, transmission, storage, and distribution – although many smaller systems purchase wholesale water
- Water utility monopolies are particularly capital intensive with long-life assets
- Scale economies in production and treatment are offset by the cost of piped networks
- For small systems, structural and nonstructural solutions can help improve capacity, regulatory compliance, and financial sustainability
- Economics do not favor restructuring, competitive markets, and some forms of corporate consolidation
- Systems should be reoptimized and regionalized based on beneficial outcomes

Functional integration

- Production
 - Surface and ground withdrawal; a locally renewable natural resource
- Raw water storage
 - Raw water storage in surface reservoirs and underground well fields
- Transmission
 - Mains and pumping stations; relatively expensive to transport
- Treatment
 - For meeting drinking water standards
- Distribution
 - Local distribution systems, including treated water storage – designed for fire protection and "service on demand
- "One Water"
 - Water, wastewater, stormwater (drainage), ecological and recreational water

IPUMSU

Water infrastructure

- Water utilities are particularly capital intensive (assets to revenues)
 - Long-life assets and scale economies in production – though not unlimited
 - Water infrastructure is mostly invisible and aging or failing to varying degrees based on materials and conditions (main breaks, water losses, infiltration) – especially legacy cities
- Infrastructure needs are estimated at \$1 trillion over the next 25 years
 - Need estimates appear to presume in-kind replacement – pipe for pipe
 - Suboptimal in the context of rising prices, falling usage, and excess capacity
 - Planning should be guided by public-health priorities
 - Not all infrastructure is "crumbling"

Water and energy

- Water has properties we wish energy had abundant, renewable, storable
 - Water systems are organized as micro-grids
 - Policy for 50 years favors putting households on grids
 - Off-grid means wells, septic systems, and in-home treatment (POE, POU)
- The water-energy nexus some add food and land
 - Energy production and usage are water intensive
 - Water production and usage are energy intensive
 - Water can generate energy gravity fed hydro and piped power
 - ▶ Water can also store energy as a large "battery" pumped (reservoirs) and elevated (towers)
- Water lost is energy lost and water saved is energy saved
 - Water systems should be on dynamic electricity rates (pumping)
 - Smart water meters may be useful for monitoring and information than pricing
- Technological disruption for water is less likely
 - Multiple social benefits of water grids
 - Scale, scope and network economies
 - Service interdependencies
 - Indoor usage is relatively inelastic
 - Technical limits to substitution
 - Community fire protection

Water supply and public use (USGS)

- Water withdrawals in the U.S. have fallen dramatically relative to population
 - More water is withdrawn for irrigation and thermoelectric cooling than for public supply
 - Aggregate water withdrawals and usage are falling with increasing end-use efficiency and broader shifts in the economy

Figure 16. Trends in total water withdrawals by water-use category, 1950-2015.

Water demand and system design

Maximum-hour (hourly peak) demand*

• Distribution mains, pumping stations, treated water storage

Maximum-day (daily peak) demand*

• Transmission lines, water treatment plants

Average-day demand (annual/365)

• Source-of-supply facilities, raw water storage (reservoirs)

Average Precipitation & Consumption

IPUMSU

Water usage throughout the day

Water demand: five products, one set of pipes

- Water pricing does not differentiate based on the cost or value of these services
 - Essential water usage is nondiscretionary consumer agency is limited
 - Water systems co-produce water, wastewater, and fire protection
 - Wastewater is a byproduct resource (water, energy, nutrients)

Expenditure and price trends combined and rates by class

IPUMSU

Pressure on water utility costs, prices, and affordability

Capital-cost pressures

- Combined water, wastewater, and stormwater infrastructure needs (rate base)
- Legacy costs (e.g., lead service lines), deferrals, and modernization
- Asset valuation at fair value and private capital investment

Operating-cost pressures

- Labor, energy, chemicals, and purchased water
- Quality standards and compliance costs
- New threats (PFAS, cyanotoxins, toxic algae, climate change)

Resource pressures

- Water supply constraints, including climate-related
- Economic or population growth (locational)

Demand pressures

- Flat or declining usage due to efficiency standards, programs, and practices
- Economic or population loss (locational)

Structural pressures

- Enterprise models and full-cost pricing, often as a fiscal necessity
- Suboptimal and inefficient sizing and operations given structural change
- Spending propensities and ineffectual regulatory oversight

Water federalism in the U.S.: states have primacy

	Water quality	Water quantity	Water funding	Water prices
Federal	Congress and EPA	Court review as applicable	Congress and EPA	Judicial review
Interstate	Basin commissions	Basin commissions	n/a	n/a
States	Primacy agencies (health & environmental)	Resource agencies	Revolving loan funds (SRF)	PUCs and/or judicial review
Substate	Management districts (varies)	Management districts (varies)	n/a	n/a
Local	Local health departments	Local zoning and fire officials (pressure)	Local financing (bonds)	Municipal and other local boards

Economic regulation

- Economic regulation is mostly focused on private utility monopolies
 - No federal economic jurisdiction and no state regulation in DC, GA, MI, MN, ND, SD
 - > Jurisdiction varies by state and system type, size, and structure
 - Publicly owned systems are subject to local control and regulation
 - Comprehensive jurisdiction in Wisconsin for municipal systems
 - Economic regulatory jurisdiction or tools are needed in the sector

Water as a human right

- Social and environmental justice call for treating essential services as rights
 - World Health Organization recommends minimal provision of 25 gal. (100 liters) per person per day (2,000 gal. per average-sized family of 2.6 per month)
 - U.S. has not established a universal service policy for water or sanitation service, only the obligation to deliver water that meets federal standards
 - Utility model emphasizes financialization, commodification, and full-cost pricing over public health and welfare – despite social impacts of having or not having water
 - New funding and pricing models may be needed (see Beecher, 2020)

