

Natural Gas Sector Breakout

Carl R. Peterson, Ph. D.

UIS

and

Concentric Energy Advisors, Inc.

August 16, 2024 Annual Regulatory Studies Program Institute for Public Utilities Michigan State University Delivered Remotely

UNIVERSITY OF **SPRINGFIELD** Natural Gas Sector

LINOIS SPRINGFIELD Natural Gas Production

Natural Gas is a combustible combination of hydrocarbons, namely methane, but may contain levels of propane, ethane, butane etc.

Gas is extracted from wells. This point is called the "wellhead."

- Gas found with oil is called "associated-dissolved" meaning it is associated with or dissolved in the oil
- Non-associated gas is found without crude oil

Gas is processed to extract by-products

- These are naturally occurring hydrocarbons that will become liquids at normal temperature and pressure. (Called "NGL" or natural gas liquids)
- Scrubbers are also used to remove large particles (e.g., sand)
- Exception is gas from coal beds or mines ("coalbed methane") which is methane and CO2

UNIVERSITY OF **ILLINOIS** SPRINGFIELD

UNIVERSITY OF LINOIS **SPRINGFIELD** Liquefied Natural Gas

Data source: U.S. Energy Information Administration, Liquefaction Capacity File, and trade press Note: LNG=liquefied natural gas. Export capacity shown is project's baseload capacity. Online dates of LNG export projects under construction are estimates based on trade press.

SPRINGFIELD Natural Gas Expanding as Fuel Choice

UNIVERSITY OF

Data source: U.S. Energy Information Administration, Monthly Energy Review. Pre-1949 data based on Energy in the American Economy, 1850-1975: Its History and Prospects and U.S. Department of Agriculture Circular No. 641, Fuel Wood Used in the United States 1630-1930 Note: Data use captured energy approach to account for wind, hydro, solar, and geothermal.

UNIVERSITY OF LINOIS **SPRINGFIELD** LNG Effect on Prices

Natural gas spot price at the U.S. Henry Hub, Annual Energy Outlook 2023 (2010–2050) 2022 dollars per million British thermal units

case and side cases. LNG=liquefied natural gas.

ILLINOIS **SPRINGFIELD** Current State of Industry

Pipelines (inter-state)

Regulated under cost-of-service regulation by FERC (Section 4 NGA) Straight-fixed-variable (SFV) rate design

Contract demand

Fixed costs recovered through a capacity (i.e., rent) charge

Distance or zoned rates

Storage rates (when pipelines provide contract storage)

Rates may be flexible

Discounting: rates can be charged between average variable cost (floor) and average total cost (ceiling)

Market-based rates: For services where no market power can be shown

Negotiated rates: no market power and a recourse rate

UNIVERSITY OF LINOIS Basics of Pipeline Cost of Service and SPRINGFIELD Rate Design

First Step: Calculate the Pipeline total cost of service

RR = Return + O&M + A&G + DE + Non-Income Taxes + Income Taxes - Revenue Credits Revenue credits might come from processing salable liquids or excessive penalty revenues

Second Step: Functionalize Cost of Service

Two basic functions: Storage and Transmission

O&M and Capital Costs Assigned Directly to Function

A&G allocated to functions (e.g., K-N Method based on labor and plant ratios, A&G costs are classified as labor or plant
and then allocated to functions based on direct labor and gross plant)

Step Three: Classify Costs

Fixed and Variable (Demand and Commodity)

Historically Demand was not classified as totally a fixed cost; in 1992 under Order 636 FERC moved toward the SFV rate design and classified all fixed costs as demand

Step Four: Allocate Costs

If pipeline has zones, allocated the costs to different zones based on capacity-miles (delivered amount to each zone) Allocate to different services (non-notice, short-term firm, interruptible, etc.)

Step Five: Design Rates

Firm Service: Reservation charge on contract demand and usage charge Interruptible (non-firm) service

ILLINOIS **SPRINGFIELD** Pipeline Rate Example

Suppose total demand cost of service = \$20,000 and commodity is \$125

Total Demand = 2,500 Dth Demand charge = \$20,000/2,500 = \$8/Dth (firm rate) Commodity Charge = $$125/2500 = 0.05$ cents /Dth

Example Customer:

Customer reserves 10,000 Dth/day but only uses 100,000 in the month $Bill = 10,000*8 = $80,000$ and $100,000 * 0.05 = $5,000$ Average price = \$85,000/100,000 = \$0.85/Dth Why so expensive? Bad load factor (100,000/300,000 = 33%) Bad nomination practices (contract demand is too high)

RINGFIELD What about interruptible rates?

Price at variable cost? What if it is zero? Price at average cost? Likely too high for an inferior service

Price at market? If market alternatives exist this is good solution

If not, 100 percent load factor rate

Suppose the total capacity of the pipe is 3,500 Interruptible rate = \$20,000/3,500 = \$5.71/Dth

UNIVERSI $O F$ SPRINGFIELD Pipeline Expansion

Large increase in 2024 most colocated with export demand

What are storage fields? Salt domes (31) Aquifers (43) Depleted gas/oil fields (326) What is it used for?

Meet the regulatory obligation to ensure supply reliability Avoid imbalance penalties

Ensure liquidity at market centers

Storage is a substitute for direct gas supplies from production Shale production is substituting for storage

UNIVERSITY OF RINGFIELD S P

Gas Consumption and Wholesale Prices (1960-2023)

15

What are the major issues facing the LDC and its regulators?

Cost of Service Interclass Revenue Allocation Rate Design

Future of Gas

What is Cost of Service and Rate Design?

Cost of service is an analytical approach to determining who should pay for the total revenue requirement

Judgment is a major part of cost of service and reasonable people do disagree

Cost of service supports rate design, but rate design is often as much related to the objectives of designing rates

UNIVERSITY OF **RINGFIELD** Objectives for Rates*

Low-income and medical baseline customers should have access to enough electricity to ensure basic needs (such as health and comfort) are met at an affordable cost;

Rates should be based on marginal cost;

Rates should be based on cost-causation principles;

Rates should encourage conservation and energy efficiency;

Rates should encourage reduction of both coincident and non-coincident peak demand;

Rates should be stable and understandable and provide customer choice;

Rates should generally avoid cross-subsidies, unless the cross-subsidies appropriately support explicit state policy goals;

Incentives should be explicit and transparent;

Rates should encourage economically efficient decision-making;

Transitions to new rate structures should emphasize customer education and outreach that enhances customer understanding and acceptance of new rates, and minimizes and appropriately considers the bill impacts associated with such transitions.

Objectives often loaded with jargon that needs definition **What is marginal cost? What is cost causation? What does "encourage" mean and how is that different from "incentive?" What is a cross-subsidy? What are stable rates? What are understandable rates? What is economically efficient decision-making? What is a bill impact and how do we minimize bill impacts?**

Cost of service can answer **some** of these questions

JJNOIS **SPRINGFIELD** Retail Price Jargon

Base rates: rates that recover the costs of investment and operations of the network

Generally, set in a rate case using the cost-of-service principles Some costs may be taken out and addressed on a single-issue basis (e.g., pensions, bad debt, lost revenues, etc.)

Utility earns a margin (i.e., profit) from these rates

Purchased Gas Adjustment: rates that recover the cost of purchasing gas for customers that buy from the utility

Generally, set on an annual or semi-annual basis based on the cost of procuring the commodity (and transport to deliver commodity)

Revenues from these prices are reconciled to actual costs generally on an annual basis

Utility does not earn a margin on these rates

Billing determinants: Factors used to compute a customer's bill (e.g., number of customers, usages, demand, power factor, etc.)

UNIVERSITY OF **ILLINOIS** SPRINGFIELD Typical Tariffs

ILLINOIS SPRINGFIELD Factors Affecting Rate Design Choices

Economic

Cost of service

Value of service

Competitor prices

Price differences and discrimination

Availability of gas supply and capacity

Return and revenue stability

Regulatory Factors

Precedent Intervenor interests

Usage Patterns

Changes in peak demand Changes in overall throughput

Historical Factors

Rate perspective Rate continuity

Social and Political Factors

Customer reaction and acceptance Public relations aspects Economic conditions of service territory Social obligations to particular customer groups Political attention and involvement

LINOIS RINGFIELD Steps in Cost of Service

Obtain test year utility revenue requirement

Other revenues (e.g., off-system sales, Hub sales, etc.) Jurisdictional revenues/costs

Obtain load and market characteristics of customers base Determine customer classes Billing determinants

Weather normalization may be a big issue here **Allocation of costs to cost-causers Market characteristics (e.g., bypass opportunities)**

Costs Part 1 of 2 LINOIS **SPRINGFIELD**

Time Frame

Short-run: One input, normally capital, is fixed Fixed Cost: Cost of that fixed input Variable Cost: Cost of all other inputs as output changes Long-run: All inputs are variable, there are no fixed costs in the long-run Revenue Requirement: Total cost allowed in rates Joint/Common:

Common costs result from usage of a common asset

Industrial and Residential customers using capacity simultaneously

In principle could be allocated based on opportunity cost

Joint costs result in joint production:

Peak and off-peak capacity

In principle cannot be allocated

LINOIS Costs Part 2 of 2

Average Cost: Total economic cost divided by output

Marginal Cost: Measure of change in total economic cost as output changes Economic costs supporting optimal pricing Time frame: Short-run v. Long-run

Residual Costs: Difference between LRMC and Revenue Requirement

LING **RINGFIELD** Embedded Cost Studies

Step 1: Functionalize (production, distribution, transmission etc.)

Functionalization is generally an accounting exercise (i.e., use USOA)

Step 2: Classification (demand-related, volume-related, customer-related, etc.)

Step 3: Allocation

Direct assignment

Allocator (demand, energy, customers, etc.)

UNIVERSITY OF **NOIS** Overview of Cost Allocation Process **SPRINGFIELD**

Operations and Customer Data

UNIVERSITY OF LINOIS Classification of Costs: Controversy RINGFIELD over Gas Mains

What are gas distribution mains used for?

Meeting peak demand?

Historic and future planning parameters

Mains are sized to meet the highest peak demand on the peak day

Meeting average demand?

What evidence exists concerning the reason for investment (e.g., maintenance and replacement of existing mains)

Hooking up customers?

How does investment cost change with number of customers?

If some costs are customer-related, how much?

Minimum system study Zero-intercept

NOIS Allocation of Costs: Controversy over Gas Mains

Recall questions about classification

Why are we allocating? Joint and common costs

Should mains be allocated on peak day (design or actual);

combination of peak days (3-highest); what about average demand?

UNIVERSITY OF LINOIS Demand Allocators **SPRINGFIELD**

Coincident Peak (CP): Measure of class contribution to system peak

Logic: System planned to meet peak; costs should be allocated based on customer class contribution to peak demand

Non-coincident Peak (NCP): measure of maximum demand of each class regardless of time of demand

Logic: Utility must meet customer peak demand

Unaffected by timing of system peak

Average and Excess (AE): $=$ LF*AVG DEM + (1-LF)* (Class NCP – AVG DEM)

Logic: Low load factor customers do contribute to load diversity reducing demand costs System peak demand not generally important for this allocator

Average and Peak (A&P): weight *AVG DEM + (1-weight)* (CP)

Logic: utility assets are uses year-round, not just at peak

Not all assets deployed to meet peak (e.g., transmission assets may be used to find new supply which is used year-round)

Weighting could be LF or some other number e.g., 50/50 (called the Seaboard Method)

UNIVERSITY OF LINOIS What is the difference? SPRINGFIELD

Cost of Service (in Relative Dollars)

UNIVERSITY OF ILLINOIS Allocation Principles SPRINGFIELD

ECOSS are not particularly accurate –should be used as a guide

Problems do arise when prices diverge too far from cost of service

How much effort should you put into a cost study?

Utilities have a tremendous amount of unique information – ask for it.

Some will argue to use sensitivity analysis on cost studies

UNIVERSITY OF **LINOIS** SPRINGFIELD

What to Look for In Cost Study

The Gas Company

Schedule 1.00 Summary of Embedded Cost of Service Study

PROPOSED REVENUES @ Equal Returns 22,420,508 29 \$ 60,307,342 \$ - \$ 18,551,823 \$ 500,475 \$ 101,780,148

Interclass Revenue Allocation UNIVERSITY OF

The Gas Company

Schedule 1.01 Interclass Revenue Allocation

SPRINGFIELD

Incentives v. Cost Recovery

Economists: View world through lens of incentives.

Decentralized decisions

Price is a signaling device

Result: People make good decisions, and the result is best for everyone

Engineers: View world through lens of problem solving.

Concerned about making the best decision about deploying resources to meet the objectives of the investment

Price is a cost recovery mechanism

Result: Planners make good decisions, and the result is best for everyone 38

UNIVERSITY OF **LINOIS** Why Does Pricing Matter? RINGFIELD S P

 74°

OLD WORLD

39

The Bonbright Criteria for Sound Rate LINOIS **Structure** SPRINGFIELD

Revenue-related attributes

Effective at yielding total revenue requirement without increase rate base beyond what is necessary or creating incentive for undesirable product quality

Revenue stability and predictably

Stable rate structures

Cost-related attributes

Static efficiency (efficient control of demand and supply)

Reflection of total costs and benefits (including externalities)

Fairness as to the allocation of costs to address these equity concerns (1) horizontal (treating equals as equals); (2) vertical (unequals treated unequally) and (3) anonymous (avoid uneconomic bypass)

Practical attributes

Simplicity, convenience of payment, feasibility, understandability, public acceptance

Rates should be free from interpretation controversy

Economist Approach to Pricing

Define the value of a transaction

consumer surplus and producer surplus (i.e., profit). Competitive markets maximize consumer surplus

Optimal pricing asks the question

Price such that, subject to the break-even constraint, surplus is maximized

Two things to remember

Total surplus = consumer surplus plus producer surplus. The economics does not differentiate between the two.

Surplus (always) increases if the quantity sold increases

Is that how regulators look at it?

Does not matter who gets the surplus if it is as large as possible

Most regulators charged with balancing the interests of consumers and utilities

Surplus increases if quantity increases

Many regulators charged with promoting lower sales due to climate change concerns

Pricing in practice does not seem to fit pricing in theory

UNIVERSITY OF **ILLINOIS** Is that how regulators look at it? SPRINGFIELD

VERSITY OF How do Current Rates Match Up with LINOIS Costs? SPRINGFIELD

LINOIS What is the solution? RINGFIELD

Industry: Higher fixed charges

SFV (for residential this normally means much higher customer charge)

Demand rates

Fixed fees should recover fixed costs

Many examples of fixed fees (Amazon, Costco, parking garages, etc.)

Outside utilities, no other industry is required by law to pay consumers to use less of the product

Counter argument: Higher variable charges

Fixed costs are a short-run concept, all cost are variable in long run

No economics behind "fixed fees recover fixed costs"

High fixed charges prevent price responsive demand

Low-income consumers hurt by high fixed charges

No competitive firms charge fixed fees (indicative of market power)

LINOIS Pricing Issues Today RINGFIELD

Innovation Lagging: Natural gas pricing largely lags the electric industry.

- Time of use not as important
- Uses of gas less diverse
- AMI and other technologies have lower penetration rates
- Gas demand side response is longer term than electric

Some movement:

- Demand-based charging and seasonal or peak rates (e.g., AGL, SoCalGas) Expansion rates (Gas AC, NGV, co-generation or other DER)
- Fixed charges
- Non-pipes solutions (e.g., ConEd targeting electrification of buildings) Line extension pricing (incremental v. rolled-in)

UNIVERSITY OF LINOIS Current and Future Issues **SPRINGFIELD**

Climate change: Gas can be part of solution v. coal, but is it really a transition fuel?

Lower usage makes gas utilities less attractive to investors and more costly to consumers (at least for delivery)

Need to maintain current facilities

Transport and storage constraints (NE, CA, etc.)

While average prices are generally low very high prices can occur behind bottlenecks

What about expansion (line extension policies)

Future of Gas

Biogas potential, competitive storage, more information to consumers

Electrification (space heating, water heating)

…residential..[electric space heating applications]…are approaching cost parity with incumbent natural gas technologies in moderate to warm climates, but in cold climates, incumbent gas technologies…exhibit…[cost advantage]" NREL "Electrification Futures Study," 2017 (with caveats re: high regional gas prices)

Gas demand management

Better pricing with AMI metering

Can DR save the day in transport tight regions?

UNIVERSITY OF SPRINGFIELD Future of Gas

Appendix 1

Two Versions of Bonbright Principles

UNIVERSITY OF LINOIS Bonbright Principles **SPRINGFIELD**

The related, "practical" attributes of simplicity, understandability, public acceptability, and feasibility of application.

Freedom from controversies as to proper interpretation.

Effectiveness in yielding total revenue requirements under the fair‐return standard. The related, "practical" attributes of simplicity, certainty, convenience of payment, economy in collection, understandability, public acceptability, and feasibility of application.

Freedom from controversies as to proper interpretation.

Effectiveness in yielding total revenue requirements under the fair-return standard without any socially undesirable expansion of the rate base or socially undesirable level of product quality and safety.

UNIVERSITY OF LINOIS Bonbright Principles **SPRINGFIELD**

Fairness of the specific rates in the apportionment of total costs of service among the different customers.

51 Fairness of the specific rates in the apportionment of total costs of service among the different ratepayers so as to avoid arbitrariness and capriciousness and to attain equity in three dimensions: (1) horizontal {i.e., equals treated equally); (2) vertical {i.e., unequals treated unequally); and (3) anonymous (i.e., no ratepayer's demands can be diverted away uneconomically from an incumbent by a potential entrant).

UNIVERSITY OF LINOIS Bonbright Principles RINGFIELD

Bonbright (1961, p. 291) Bonbright, Danielsen and Kamerschen (1988, pp.383-384) Avoidance of "undue discrimination" in rate relationships. Avoidance of "undue discrimination" in rate relationships so as to be, if possible, compensatory (i.e., subsidy free with no intercustomer burdens). Efficiency of the rate classes and rate blocks in Static efficiency of the rate classes and rate blocks in

discouraging wasteful use of service while promoting all justified types and amounts of use:

(a) in the control of the total amounts of service supplied by the company;

(b) in the control of the relative uses of alternative types of service (on‐peak versus off‐peak electricity, Pullman travel versus coach travel, single‐party telephone service versus service from a multi-party line, etc.)

discouraging wasteful use of service while promoting all justified types and amounts of use:

(a) in the control of the total amounts of service supplied by the company;

(b) in the control of the relative uses of alternative types of service (on-peak versus off-peak service or higher quality versus lower quality service).

UNIVERSITY OF **LINOIS** Bonbright Principles SPRINGFIELD

Thank You

Carl Peterson

Instructor

Department of Accounting, Economics, and Finance | University of Illinois Springfield

One University Plaza MS UHB 4093 | Springfield, IL 62703 USA

Tel: +1 312.287.0127 | cpeter8@uis.edu

Executive Advisor Concentric Energy Advisors, Inc. Chicago, IL USA Tel: +1 312-287-0127 | cpeterson@ceadvisors.com