How Low Can It Go?
Implications of Falling Usage for Water Utilities

© Janice A. Beecher, Ph.D. (2014)
Institute of Public Utilities, Michigan State University
beecher@msu.edu • ipu.msu.edu
Please do not distribute by electronic or other means or cite without permission.
Revised 3/7/15
But first… where does it rain more, Dallas or Detroit?
Electricity trends

Electricity generation in the U.S. (EIA 2012)

- Total electricity generation (bkwh)
- Electricity generation per capita
- Electricity generation per GDP ($2005 bil.)
Natural gas trends

Natural gas consumption in the U.S. (EIA 2012)

- Total gas consumption (bil. Cf)
- Total gas consumption per capita
- Total gas consumption per GDP ($2005)
Water trends

- Dramatic and durable efficiency gains without loss of technical functionality
- Usage remains stable even in the context of macroeconomic growth
- Water appears to defy “Jevons paradox” for resource consumption
Water v. energy grids: water has properties energy wishes it had

- For decades, despite capital intensity of water services, a central policy goal has been to get customers on the water grid
 - Off the water grid means wells and septic systems and in-home treatment

- Water grids provide multiple social benefits
 - Public health and welfare
 - Fire suppression
 - Sanitation services
 - Environmental protection
 - Network economies

- Fundamental technological disruption seems less likely for water than for energy
 - Indoor demand is substantially price inelastic
 - Water grids must be supported by lower levels of more efficient water usage
Water withdrawals in the US

Total fresh and saline water withdrawals in the U.S. (bil. gal. daily, USGS 2005)
Freshwater withdrawals by sector

Fresh and saline water withdrawals in the U.S. by sector (bll. gallons daily, USGS 2005)

- Thermoelectric power: 41%
- Irrigation: 37%
- Public supply domestic: 7%
- Public supply nondomestic: 5%
- Rural domestic: 1%
- Livestock: 1%
- Mining: 1%
- Aquaculture: 2%
- Industrial: 5%

Map of freshwater withdrawals in the U.S.
Water usage in U.S. cities (WRF, 2011)

Water usage in western U.S. cities (Frost, 2013)

Las Vegas daily water pumpage (1987-2013)
Dallas water consumption trend (1996-2011)
Detroit daily water pumpage (2009-2014)
Falling water usage

- Aggregate, per-connection, and per-capita water use is stable or falling
- Declining annual sales of 1-3% are not uncommon (25% cumulative per WRF)
- This nonlinear trend may reach an equilibrium in perhaps 10-15 years (?)
- Population and economic activity remain significant local drivers
- Persistent usage volatility is associated with climate and weather
- Developing economies still see growth while legacy cities see decline
Apparent causes for falling water usage in the U.S.

- **Per-connection or per household**
 - Demographic shifts (population, household size)
 - Property (lot) size and growth policies
 - Nature of commercial and industrial activities
 - Irrigation efficiency (practices, codes, efficiencies)
 - Aging water meters that under-register (minor role)
 - Effects of recession on economy and income (temporary?)
 - Cost-driven price effects on discretionary use (elasticity)

- **Per-capita or per-function**
 - Efficiency standards (EPAct 1992), codes, and ordinances
 - Commercial and industrial processes and technologies
 - Changing culture and environmental ethic (e.g., lawn watering)

- **No new offsetting uses for potable water**
 - Except for hydraulic fracturing – unregulated (by EPA) and may count as mining (by USGS)
 - Compare to energy
CPI trends for utilities (U.S.) with forecast
Why water prices may matter more today

- Water rates are rising much faster than inflation generally or for other utilities
- Water usage is relatively price inelastic but not perfectly so
- Discretionary use (nonresidential and outdoor residential) is more price-elastic (responsive)
- Could be entering a more price-elastic segment of the demand curve
- Emerging evidence suggests responsiveness to marginal prices as well as to the total bill
- Well-designed prices (increasing block, seasonal rates) can help close the peak-to-average ratio

![Graph showing demand curve with price elasticity](image)

Fig. 1. Estimated price elasticities and ranges at different marginal prices
Benefits of end-use efficiency

- **Efficiency lowers costs and revenue requirements** ("nega-gallons")
 - Short-run: avoid variable operating inputs – *including energy*
 - Long-run: extend asset life and resize, postpone, or avoid new capacity

- **Efficiency improves water system operation and management**
 - Prudent capacity utilization through reductions of peak demand
 - Reduced revenue and earnings volatility (risk)

- **Efficiency cannot avoid all system costs** – particularly in the replacement cycle
 - Hyper-efficiency may have deleterious consequences for systems and customers

A note on hyper-efficiency for indoor usage

- Technological standards will continue to drive indoor usage down
 - Households are becoming much more efficient (<40 gpcd for indoor use)
 - Marginal value of conservation diminishes due to current operational requirements
 - Local conservation may have limited global impact (except for energy usage)
 - Attention should turn to outdoor use and other sectors (irrigation and cooling)

- Hyper-efficiency (<25 gpcd) has operational consequences
 - Low flows may cause water pressure and quality issues (need for flushing)
 - Low flows also affect wastewater operations (flushing, pressure, or vacuums)
 - Increased use of maintenance water may offset conservation savings
 - Indoor water can be captured as a resource for reusing and recharging

Jevons?
Efficiency and volatility

- Gross sales volatility is primarily a function of weather-sensitive outdoor use
 - Indoor usage is less responsive (elastic) relative to price and other changes
 - Rising variable prices and bills could drive down outdoor usage significantly

- Trends in indoor and outdoor usage determine the weather effect on water sales
 - Supply-side (leak control) and indoor efficiency will lower base-load usage, although only the latter will affect sales revenues

- Sales and revenue volatility remain a function of outdoor water usage
 - If maximum (outdoor) use persists or rises, volatility will increase due to the larger disparity between peak and off-peak usage
 - If maximum (outdoor) usage falls, volatility will decrease due to narrowing of peak to off-peak
Outdoor efficiency will reduce sales and revenue volatility
The conservation conundrum: rates and revenues

- **For most, cost of service is driven more by infrastructure than the commodity**
 - Short-run marginal costs tend to be low given substantial fixed capacity

- **In theory, other things equal, reduced water usage requires higher rates**
 - Revenue neutrality suggests that bills would remain about constant – and actually be slightly less due to savings in variable costs

- **In reality, water bills are going up not due to lower usage but due to higher costs**
 - Total costs are rising for most systems due to infrastructure investment
 - Unit costs are rising for some systems due to loss of customers and scale economies

- **Utilities have a difficult messaging problem with regard to higher water bills**
 - Efficiency cannot promise lower bills, but it should promise “lower highs”
Revenue shortfalls for water utilities: key culprits

- Lack of timely rate adjustments
 - Utility and regulatory lag and rate politics (public systems)

- Inadequate cost and demand forecasting
 - Test year for ratemaking

- Rate design
 - Rate blocks and dependence on variable usage

- Concurrent loss of other revenues
 - Subsidies and fees
Lag, sales, and returns

- Firm value does not depend on sales growth but on realized returns
- Achieving returns depends on relative cost and efficiency trends between cases
- Regulation plays an important role in maintaining the risk-reward relationship

<table>
<thead>
<tr>
<th>Efficiency trend between rate adjustments</th>
<th>Increasing operational efficiency</th>
<th>Decreasing operational efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost and sales trend between rate adjustments</td>
<td>Falling costs and/or rising sales</td>
<td>Achieving returns is likely</td>
</tr>
<tr>
<td></td>
<td>Rising costs and/or falling sales</td>
<td>Achieving returns is possible</td>
</tr>
</tbody>
</table>
Revenue assurance mechanisms (decoupling)

- Purportedly addresses the utility’s “throughput incentive” (to sell more)

- Decoupling conflicts with
 - Price signals about value and consumer sovereignty
 - Concept of capacity costs (tends to perpetuate legacy costs)
 - Preference for variable and dynamic pricing (looks very “fixed”)
 - Incentives for utility efficiency and performance (including effect of regulatory lag)
 - Risk allocation under the social compact and traditional economic regulatory model

- Alternatives to decoupling
 - “Organic” decoupling with more efficiency over time (i.e., do nothing)
 - More frequent rate cases to address “utility lag” in recognizing change
 - Prospective (forward-looking) test year for both costs and sales
 - Evidence-based rate design to provide stability from base usage
 - Demand-repression factors to account for price-elasticity effects in rate cases
 - Adjustment mechanisms with checks on prudence, earnings, and allowed returns
 - Improved demand forecasting and modeling (beyond moving averages)
Rate revenue is a product of a numerator and denominator

\[\text{Rates} = \frac{\text{Revenue requirements}}{\text{Sales}} \]

- Test year, cost and revenue adjustments, and rates of return
- Forecasting, analysis, and demand modeling
Declining usage and rate cases (electricity)

Figure 5: Electric rate cases filed by year and US load growth %, 1999-2013

Source: US Energy Information Administration (EIA), CRA research
Moving averages

- Moving averages may be inadequate for forecasting and ratemaking
- A high-volatility but stationary trend (lower line) may be easier to manage than a low-volatility but non-stationary trend (downward trending line)
- Revenues will always lag during a non-stationary downward trend
From passive to active forecasting (Seattle)

- Active forecasting considers various determinants (endogenous and exogenous)
- Statistically adjusted end-use modeling can be used
- More research is needed to lower forecasting costs and improve accuracy

- Geographic information systems (GIS) can be used to map demand
- Data and models can improve understanding of demographic patterns
Fixing revenues by fixed prices

- **Water sector should resist the impulse to move toward fixed-variable pricing**
 - In the long run, *all costs are variable* – and pricing should reflect this

- **High fixed charges**
 - Undermine affordability and equity, where low-use subsidizes high-use
 - Undermine price signals to promote efficient outdoor usage (perpetuates peaking)

- **Revenue stability can be provided by well-designed block or seasonal rates**
 - First blocks can provide considerable stability

- **New variable pricing models may be needed**
 - Use of peaking factors to improve cost allocation and rate design
 - Use of three-part tariffs (customer, capacity, commodity)
 - Use of property value to assign some fixed capacity costs
 - Dynamic pricing is less applicable to water due to storage (like natural gas)
Multi-objective water pricing

- Multi-objective rates can help achieve both equity and efficiency
 - Lifeline rate at lowest block for affordable access to meet basic needs
 - Graduated capacity charge based on property value (related to fire protection)
 - Increasing block rate based on usage to encourage efficiency
Long-term implications of a “new normal”

- Water demand could become more stable and predictable and should eventually find a new normal or new equilibrium (35-45 gpcd?)
 - The wild card remains outdoor use in relation to weather and climate but cultural efficiency gains there will change the water game

- Benefits of stable and efficient (“low”) water usage to utilities
 - Demand forecasting becomes easier
 - Weather and climate becomes less determinative
 - Rate design becomes less determinative
 - Customer bills (revenues per customer) flatten
 - Securing financial capital becomes easier
 - Hedging (for revenue instability) becomes unnecessary

- In other words, revenue stability can be achieved over time with sound pricing and increased end-use efficiency
Re-optimizing water and wastewater systems

- Don’t build tomorrow’s water systems to meet yesterday’s water demand
 - Failure to capture avoided costs in system design negates benefits of efficiency
 - Optimization includes all functions (production, distribution, storage, and energy management)
 - Public systems may underinvest while private systems may overinvest (AJ effect)
 - Both need to guard against risk of imprudent or stranded investment from “expansion”
 - Assumptions about replacement should be scrutinized and cost recovery should not be automated
 - Supply augmentation (desalination and gray-water systems) should be carefully evaluated

Water industry capital expenditures (EPA, CWSS 2006)
Strategic infrastructure planning

- It may be imprudent to replace all pipes pre-emptively (Seattle)
- Some systems practice watchful “run-to-failure” for some infrastructure
- Water differs from natural gas on this issue for obvious safety reasons
System optimization modeling

- Water systems benefit from capital planning and asset management
- Advanced modeling can identify pipes to upsize, downsize, add, or abandon
- Genetic algorithm optimization model considers water and energy (Optimatics)
Water systems and fire protection

- Water systems are co-generators: one pipe delivers five products (20 tons/mo.)
- Indoor water use could become a byproduct of fire protection and sanitation
- How water is used has implications for rates and rate design

<table>
<thead>
<tr>
<th>Usage</th>
<th>Gallons/month (four-person household)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumption: drinking and cooking</td>
<td>1,000</td>
</tr>
<tr>
<td>Personal hygiene: washing and sanitation</td>
<td>1,000</td>
</tr>
<tr>
<td>Home hygiene: laundry and cleaning</td>
<td>1,000</td>
</tr>
<tr>
<td>Discretionary: irrigation and other outdoor use</td>
<td>1,000 – 3,000</td>
</tr>
<tr>
<td>Fire protection</td>
<td>???</td>
</tr>
</tbody>
</table>
Observations

- Efficiency gains appear quite durable with the potential to avoid costs
- Demand may go very low as prices elasticities drive discretionary usage down
- Outdoor usage will drive sales and revenue volatility, particularly if underpriced
- Capacity utilization and volatility argue for peak-usage pricing
- Decline has occurred largely without programs, incentives, or “decoupling”
- There is significant potential to avoid operating and capital costs
- Water utilities need to invest in forecasting, modeling, and planning
- Water utilities are not facing a death spiral or existential threat
- Water systems should be re-optimized relative to new normals
- The water sector can lead the way from a growth to a sustainability paradigm
Data request for further research

- Long time series of data
 - Customer sales by class
 - Number of customers by class
- Rate history data
- Programs, codes, and policy changes
- Demographic data
- Other relevant information
Thank you!